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ABSTRACT

One of the basic difficulties (aside fram the mathematicall in
the theory of non-local fields has to do with physical interpretation.
In the case of "free fields" in so far as our formalism is concerned
there does not appear to be much difference between local and non-
local fields. It was for this reason that we embarked on 2 program
involving the study of non-local fields with interactions chosen ir
such manner as to vanish in the limit of the local field approximation,
if indeed the fields in nature are non-local io begin with. Our con-
siderations are restricted to the situation which maintains for the
case of the so-called non-local electromagnetic field as a convenient |
exaraple since the properties of the ordinary electromagnetic field are
well known. Although the form of the interaction that we have chosen
is somewhat artificial, it satisfies the requirement of vanishing in the
local field case and brings us in contact with the type of problem that
has to ve dealt with. In particular the interaction is chosen to be a
local external inhomogeneous electromagnetic field and is introduced
in a manner similar to that currently in vogue in the Quantum Theory

Fields.

It is shown that our problem can be reduced to the solution of ,
the problem occurring in the usual theory for a "massless" vector

meson in an equivaleat external electromagnetic field. This external
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electromagnetic field occurs as the difference of the local external
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% . which occur in the expansion of a non-local field. Thus a non-
lc;cal "neutral" particle characterized additionally by the numbers

(,f'/ . would take on the characteristic of a "charged" particle under
influence of the quivalent external electromagnetic field. On the basis
of this finding it would be possible to take over all of the machinery of

current theory and at the same time inherit their shortcomings.

Although 20 numerical calculations are m.de, this finding increases
our insight regarding physical significance, in so far as our work is
concerned, of the C~ numbers %ﬂ- appearing in non-local field
theory. This result is to be compared with the significance attributed
to the 3, A for the case of a constant external E, H field. (1)

Second quantization of the free non-local field is effected in a
manner different from that effected for a scalar field reported else-
where(z; with substantially the same results. In particular, here,
upon anticipating second quantization, the fields are subject to a
unitary transformation which in a certain sense localizes the field.
Again as in the case for a scalar field(z) the local and non-lcc
electromagnetic fields admit of a net number of quanta operator with
the aid of which the energy and momentum and other operators for the

field in particular the mass operator may be expressed. The energy
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is positive definite while the momentum and net number of quanta
operator are not.

Some consideration is given to the problem of the generalized
Schroedinger equation for unitary transformations in order to yield
independently of the commutation relationships postulated for the
fields the result that if the field equations are satisfied the unitary
transfcrmation considered as a functional of a space like surface is
independent of the latter. This is effected for fields obtained via the
usual Lagrangian methods as well as via operational methods for
local fields. In the latter an essential difference occurs due to the
appearance of the net number of yuanta operator in the functional
cquation for the eiements of the unitary transformation. This may
iuve a bearing on the concept of statistical equilibrium in that the
probability for transitions from one state to another (under suitable
restrictions) is found to decrease as the net number of quanta involved
increases.

The results of our investigation a:mongst other things indicate
that the operational methods yield novel resuits even for local fields
as exemplified, for example, by the non-vanishing of the net number
of quanta operator even in the limit of operator local fields. This
operator vanishes in the limit of C~ number ficlds. It can be shown
that if we admit complex fields (Spinor fields satisfying first order

equations) the four-current quantum density obtained via conventional
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methods is identical aside from numerical factors from the one obtained

via aur aneratianal methods. Such a current would vanish if the fields
are real according to conventional techniques. Our operational
method indicates that a four-current vector exists whether the fields
are complex or not. This raises the question among many as to the
possibility of describing all fields by means of real (hermitian)
entities since heretofore the complex fields were introduced to assure
existence of a four-current vector. It is believed that this question

as well as others warrants investigation even within the domain of

local operator fields.
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I. INTRODUCTION

1. Problem of Non-local Photon in Interaction with General Locai
r W Field.

% -a:,.y_\__.__

In an earlier report(m consideration was given to the problem
of the interaction between a constant £ , H field and a non-local photon
from a semi-classical point of view. We have left open the question
of quantization of such fields. In the case of a constant E,H field
the operator field equations were not too difficult to solve. For a
general E, H field the equations are such as to necessitate our
restricting the investigation to a study of the possibility of reducing
the problem to that which confronts us in the ordinary theory. We
will find that this can be done in a mathematical sense. However.
the reduction of the problem will not imply that no physical differences
occur between the theories. The structure of the reduced equations
are such as to help us make some physical interpretations (including

quantization) using our classical theory as a guide.

2. Some Identities.

Let us consider the commutator expression

!
L L«P - '»’] 1.1
Fpe p) 770 (1.1)
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where \{“ is a local function:

% |
‘ \.73/‘“ \/] = O) (1.2
€

and (ﬂu is one of the displacement operators. U on the other hand

-

i < is a non-local function. Moreover, we reca.ll(a) the following funda-

; mental commutation relationships between the displacement operators

; > . v

{ and the space-time operators .¥

§ T

i

]

' 5 v‘] (v

; Lo = -4 1.3
; oy ¥ e (1.3)
I for a system of units corresponding te the choice 'f’\ =C = |.

Now \%‘_ and U may be expanded in terms of the basic {urctions

ARz S L g B ¥
o (kL ¥ TP~ .
. - and the non-local basic functions < ¥ e

respectively as

Ay B eaer e ———

]
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(1.4)

't“
| i
&

%
i’

U= 2_ w (%.,k)C’,"?’Mf“ et (1.5)

(1. 4) is mevely the ordinary Fourier expaasion of a local function
while (1.3) corresponds to the non-local Fourier expansion of a non-

local function. (4) It is to be noted that Zk and Z % are tc be
7

A A RN 0 ey R e e w—mn——-n-—f 7--—-—-“ O T
& NN A S gt e L R L
, < oy g - e T DS ‘ﬂ o g B
" ; : ok SRS g _
' ' ® = 2 v "“‘& 6L S e £ .
- % -~y . ke
3 v L NS, SRR e )
R oy e RS
3 4
b SN r..; ~4, -713 ,‘“;
- > e :



Pt

{ 7.
5
| 4
| interpreted as 4-fold and 8-fold integrals over the /? - space and
i % }2 ,ﬁ. space respectively unless otherwise specified. Upon intro-
‘ E ducing (1.4) and (1.5) into (1. 1) we find that (1. 1) may be written as
¥ s ..l. ( ’ -h” )
. -Lzm wlg -2 (A NE 1) x
3
[ Lk ﬂf’
: u(% k ’)]6 e (1.6)
| J
i $
! [Y
! e
' { upon noting that
i §
i L ’~~ o M b rA*
AR S YA e o R
3
gt and redefining our summation variables.
. A i ok X
! ;i The coefficients of our basic functions € ¥ - 6‘ ’
% 1 occurring in (1.6) bear a striking resemblance to the operatiofis in-
volving matrices and vectors in quantum mechanics. For if we define
(in a representation with /2 diagonal)
¢y f /] ] .0 4 '
(RS R)IK"D =+ (k') § (K=k"), (.9
; ’ el gl f('l’k*/
Kl ()R =v K-k N e E ! — 1) (1.9)
: LRAC LY 7™ ) '
‘f“ then (1. 68) may be written as
v ::
- A £ VAR R --._—v-\ - )
: e : R R T
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f ’ Now if we undertake to expand
£
b Cru L Lp.- V-, ¢u], (1.11)

where V , is another local function with expansion

V. =5 v (k) e

) (1.12)

we will discover after using some elementary laws of matrix multi-

LAt aid £

plication that

Cope = (*[Tp, -V, 1, Lpu-V, U]

<= > R (b X R U ) TR DU k)

HER"

ey e gt (1.13)

These results are readily generalized to commutator expressions of

higher order.
It may be mose convenient to work in a representation with

t
the operators 5 ~ diagonal which we define by the equations
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By the analogy which exists between (1. 14) and the commutator equa-
L
tions involving the space-time operators /t/t and the displacement

operators 42/(,« we can with the aid of our transformation functions

(1.15)

SHRIEICE D AN e

rewrite (1.10) in terms of the § 'S . Let us obtain the structure of
<R’ ' Vi f k") given by (1.9). Since from (1. 4) \//“ is local we

may write

_ ckx )
%(K)-;e %-(L;k)é(lz) (1.16)
Consequently, from (1.9) we have
‘ - ] - ---.’:"M(.‘ZI‘_-k” )
CRIv, (¢ 1k > = (et Bt ) x
) ‘ 0
\//u(t;k,)é(lz-/z), .17
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/ (1. 17) is readily recognized to be the matrix element of
4
Yn,(g*{ﬂ-)- VM ( P ) . Hence we may write

(kR I%((ﬁ'), R > =<k’ \//‘L(E*Ib«)—\% (5)1 k">} (1.18)

which in view of (1.14) enables us to write in a representation with

§ diagonal

CE v (@E MY, (5= ¢)- V(IS G-5")  waa
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II. EQUATIONS FOR NON-LOCAL ELECTROMAGNETIC FIELD IN

INTERACTION WITH A LOCAL ELECTROMAGNETIC FIELD
2] TRV TV avnma bl man o~
e o Ao ANA J—-\iuubAVLAuo

From previous work(s) tne field equations for a non-local

Electromagnetic Field in interaction with a local external electro-
magnetic fied are

' ] = 2.1

'l & 1= 0, (2.1)
where

E_ - 4 ) i

Cuv = VLB ASY-LLE AT (2.2)

with E/)u_ defined in terms of the dlsplacement operator //3 and

the external local vector potential A /u, as

>, (¢)
b= o= g Ay, @3

where aq is the coupling constant and where we have taken 1’: =C=|.

In general we cannot add in addition to (2. 1) the equations

~1+tLE B J+[E. )=
> : SR 7 L
LN “."}“:‘: Aol
TR ~1‘_;,‘~;»;§f.;‘.:‘~,
% i 'g‘ vﬂ"l e 5';:n’\‘_-)«“‘(‘
e 2 ; AN LA
; 2 ~i T
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unless Lf;, “, F l = censt. , which latter oucurs only if the external

E. 5 H field is constant. This case has already been considered. 1

Now
B TR EL AR, 2,40 )
b ] [ B AL LEL, A A, (2. 4)
R, - (F, I-(B, B A
upon using (2. 2). But
L2, P A T-LE A -
(2,8, A 1+(E A,,J/?.,}+ (A, B B1 o
after using the Jacobi identity

(A,B,C1+[B C,Al+[C,ABlz0.  @o

Consequently, upon noting that the first two terms on the right side of

(2. 5) make no contribution we have upon adding the equations of (2. 4)

T T N RS R

I lﬂx'
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However,
2 |
(2,5 1= -i g F/:ﬁej ) (2.8)

(e
where F/—{u,) is the local external field strength. In view of (2. 8),

(2. 7) may be written as

B R U A AR N N P
glA, £ +4 [A... F;?Hgmv., Frel. @

Equation (2. 9) is the analogue for our case of the second set of Maxweili's
equétions which are identities as a consequence of the definition of the
field strengths in terms of the vector potentials. Inspection of (2. 1)

and (2. 9) shows that these equations are invariant if we add to the

vector potentials A e the expressions [/P/“ p v/ ] where W

e ST =
3 X : - gt N
o . A B
! - g - g o’ T
- R .
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I —
is a local function. ¥For if we denote by F e v thac !;u, v obtaincd by

augmenting each /A)u by l‘/ﬁu_) I;VJ we obtain
6:.‘/': F V+[A/(:2,/Fr, W]'[AI;),'PM,I/]) (2.10)
which reduces to

4
F;:,,, = /;: - @.11)
upon making the observation that if l}/ is a local function so is

(’PM- ) l}/:’ and lﬁ- 5 vf.] and then noting that the external vector
potentials A(:-) and A/(z) are local functions.

(e) iy
If now we alter the egternal A AL by adding L7;u W] we
observe that

F;:w = ,j;r 'L’.A,,//?/u/ W]*L-A/wa WJ) (2. 12)

/"
where F;u, v denotes the altered field strengths. Consequently, if we

alter both the external and internai vector potentials by adding

[’P,w ) l/] , we find that

F“ =F" # F (2. 13)
/u.u“' /u,u‘ /u. 2
I s B 3 4 vk-— .
oo ey .
< Ok e W
- 2 " o "“‘,S, (\‘?{‘mdt:f
B - 2 S
% LIS AU M- 4 ;
——— ? ’ i
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1] ]
where /u.f corresponds to the altered F .-+ Thus equations 2.1)

/U

and 12, 0) are altered  We must conclude then that only if the internal

AbAva  Newe wy

vector potentials A are subject to a gauge transformation will the

/.A—

Field equations be invariant unless the fields are local and/or

[4)/0. : V/] is constant.

bR P“‘M’.

4, Equations for Coefficients in the Expansion of the Non-local Vector

Potentials 4 e

If we introduce (2. 2) in (2. 1) we obtain

M s S

Ty

»

Xy

AL, P AT+ R, P A% =00 e

’ : T : : A .
Consequently, if we identify 7z of section 2 with g AL which
appears in our definition of F e in (2. 3) we obtain upon introducing

the expansions

A"*E% a"(%,lz)ei?’ﬁﬂ“ 6"’/*”“) (2.15)

|

T2 PY] ¢ 5 N #
Aler Z a‘P (k) et m® ) 2. 16)
R

into (2.14)
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gA(e) V(é)) k") a* (46 ,lz")} et T gl (2.17) *
Now we recah(s) @) that if
U - é a(4,k) U Y
where the U%k are basic functions, then
a—(% k) "T(‘ U U%h)
sothatif U = O., then @ ( ,h) = (). Prom this we must
conclude since 6L%Mf/" 6""’" Z’Ware proportional to the non-
local Fouz;ier basic functions that (2. 17) is equivalent to“
) () (€ ¢)
%:{(la &(&-3 A (544 A,b(é))(k"‘-jA‘ #6-4) +
JARB) IR 27 (4, k)
b "L B (e) . A (©) v w@vi¢
(k1 (- g A2 (540 +g AL ()(RZg A7 5- )t
gAmr(%)) | k"> a/’b(lb‘, k")} 2 0. (2.18)
K3 3% SERIYT Y o
" Rt =
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If we refer to the work of section 2 again we discover that (2. 18) may

ke given an operator version if we interpret

|
i ¢ .
)/u, = T L )k/“'/ (2.19)

so that (2. 18) may be written as

(“ﬂ,ﬁ'[\f«)( ((,H' A‘“’(é)\(lz A‘e/“(y +3A“")“(§)a,"(a k)

e

(5* BA/e)(g '%)+5’A;f)(g))<k‘/:j A(e)v‘(g_%)+3A(e)r(§))dfu(%)h)ra(2' 20)

Another form of (2.18) may be obtained by going to a representation

with the ) diagonal. This may be done with the aid of our trans-
formation functions (1. 15) as in quantum mechanics, For if we multi-

ply both sides of (2.18) by the transformation function <§ l k >

sy adis =

SN, )
Vo Vet

and integrate using
/1 K> d*k <k
and then expressing , k"> as

W>=/t§“><§“ak">d*§j




18.

| } we obtain the operator version in this representation ( %  diagonal)

: % | to be l
; ‘ ' (é-: gA,ff’ (§-4)+ jAﬁf(é))(lz" —3/\""/ “(5- %)fjﬁ‘””‘(g))'f"'(/_fﬁ) |

w2

: -(‘l e)(; "([5)ng(’)($)> kr A(e)u(é %)+9A(e)f ;) U/u(q, g) o |

where

if/&(g,ﬁr,)iﬁ'ﬁ 62;"(&/4’(/3.,&)‘:1“/?. (2. 22)

e e et e AR A . i AN

; We have now succeeded in reducing the solution of the original
: operaior field equations (2. 14) to the solution of operator equations |
; i which customarily appear in quantum mechanics, namely (2. 20) or |
S 2.21). The &/ (¢, K ) appearing in (2. 20) and the W? 5) |
1 E appearing in (2. 21) may be looked upon as vector wave functions,
: j i“ the former being in a representation with S diagonal and the latter
“ & € in a representation with R diagonal, with g and R satisfying the
wg‘ : commuiation onships (1. 14) and further where the @.s and
: if[ V/'S are related through (2. 22).

i

5. Equivalent Electromagnetic Field.

Further inspection of (2. 21) indicates the striking similarity
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which exists between it and the classic field equations for a massless

vectny maann in intorantinn with an asvtarnal alactrnmarmetin fialA
PTANTINAM With an oy al A nacmaiie Tialn

AP(-4)-AR2 (5)

of local fields

which latter would vanish in the case

%/u. = 0.
It would be appropriate to identify

1 (€) _
A/u =

A/(:)(S,- %)—Aﬁ)(g) (4. 23)
as the equivalent external electromagnetic field that affects a non-

local photon from a purely structural point of view. Thus a non-local
"neutral” particle characterized by the numbers % oo in a local electro-
magnetic fisld Af‘_) (%} would "see" or seem to be affected in the
classical sense by the equivalent electromagnetic field given by the

right hand side of (2. 23). Thus if we impute to the C- numbers 5
é.ppearing in (2. 23) a rough equivalence to the numbers used to describe
the position of a point particle in classical mechanics, we may come

to some qualitative conclusions regarding the behavior of a non-local
"neutral" particle in a local electromagnetic field by invoking the
machinery of classical mechanics.

As an exampile we may coasider

the effect of a local coulomb field on a non-local massive particle.
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From (2. 23) we would conclude that the "trajectory" would be equiva-

ient W that whicu would saidL o1 & charged particle in the nrasance

Db AVL 4 wrMaL Yo e

of two equal but oppositely charged particles displaced by a distance
‘ 6})— | . From this point of view we have discovered another way to
gi;; significance to the (- numbers 63, appearing in our non-local
plane waves. For in the treatment of the problem of 2 non-local
photon in interacticn with a constant E y H ﬁeld(l) it was iound that
the C- numbers %— appeared in such a fashion in the expressions
for the temporal component of k/u. as to make it possible to ascribe
to the non-local photon a magnetic and electric dipole moment.

It would seem possible to carry the analogy further and utilize
all of the formalisms at our disposal to carry on the program of
second quantization of the \/:u fields appearing in (2.21). Such a
procedure would imply the imputation of the same physical signifi-
cance to the y/_/¢ as was accorded to the A/,, from the local point
of view. However, it must be recalled that we are restricting our
investigation to the case of a possible interaction of a local E : i
field with a non-local field and the conclusions and identifications
that have been suggested here may not be valid for the problem of
the interaction of two or more non-local fields.

The connection existing between A + and y,,u, may be

readily obtained from the following considerations. From (2.22) we

have
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‘S'V/*'(%) f) ] (4-772‘)'766#*’“ (L/v‘(ﬁ-,k()clqk (2. 24)

But

/\”=(4n‘)"// YT TR, e |

-1
from (2. 15) upon using the factor (4""’1) so that now the co-

efficients of a,u (/t ,k ) in (2. 25) involve our normalized non-local

'
g

plane waves or basic functions. After introduc ing (2. 24) in (2. 25)

we obtain

A/"': Ué?r“)—yjfe Ltf“'f’,v y/"(g'gjez'&(xﬁ,sﬂ)dwkdu%—dué. 2. 26)

However,

Ty b o PRI AR

(/67‘,4)-/'{,//,‘"(%’ g) ei"}a-(r."'.sﬁ)duk Cl‘*é - l}/(%} Z) 3 (2. 27)

bl Sneatacd dr Bve s ndie. 4

To show this it is merely necessary to take the matrix elements of

58

the left hand side of (2. 27) in a representation with ]L diagonal to
3 i "
discover that it is equal to ‘?V(% i Z') é (1'» -k ) . Conse-

quently, (2.26) becomes

A’“=/€zz'ﬁf"‘ Ww(%.,. /Yz)d“z—. (2. 28)
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As a summary we may write the following equivalent expressions for

a non-local function A/
A= (4 Tr‘)"/jf a(g, ket Bt Y d k
=./e“.?'“f/* V//‘"(lﬁ,}ﬁ) c}”%, (2. 29)
where
VA5 o T fe i
(2. 29) is quite general.

8. Differential Equation for Matrix Elements.

(3)

In view of some previous work' ' we may express the non-

local function A/u' Ly means of the equation
L o . .
A'“=/€°* ﬁ“(x-fl/\'wlk’)d*%. (2. 30)
7
so that upon comparing with (2. 28) we conclude that

(g, 1) =Sr-¢ | A1z >, (2.3)
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d
(2. 31) states that ‘f/ ( 4 . 70) is obtained from the matrix ele-
AN W
ments {2’ 'A'u' | "> by replacing £ by X/"‘z— and ¥ !
by ¥ . (2.30) can also be written as i
!
0 /b
AR el A
A ,/MA lzrgy et hed g, .32
upon noticing that
¥t f (v, p)e . flygs ). (@39
e, p Flzrg,p) a
(2. 30) and (2. 31) suggest that we could have obtained (2. 21 or its
equivalent by making the substitution (2. 30} or (2. 32) directly into '
(2. 1) and using the statement that if
(elUle+qyet od*
X }L-ng/ %:O, (2. 34)
then
]
(le!)c+%>: 0. (2. 343)
This statement may be verified in the following fashion. If we take
the matrix elements of (2. 34) in a representat.on with % diagonal
we obtain upon noting that
AR OGPl T PN TR (S5 D M oy TR TR0 o RN EER
% L bl B 2 w R, S0 3oee T - ':% r'zﬂ*\— ‘“;‘{\
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Consequently, if (2.34) is satisfied we must have <V/' \U ‘ %"> =0.

Hence if we replace /A vy X and ,'Z” by Xt 3— we must con-
clude that (2. 34a) is valid.

H we introduce (2.32) directly into (2. 1) we obtain after using

(2. 34) and (2. 342) and upon defining

A"M(%) = A/°(e)(b'%)aA/"(e) (z’,)) (2. 35)

{4

P.=i [’P,u«) ]1-A* (%)) (2..36)

4

E.;UEL[/&MU]-A'(%)U (2.37)

P/;P/A<Z~L%$AV‘)L>-5L PN'<L-%’A’W|E>:O. (2. 38)
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(2. 38) is entirely equivalent to (2. 21) and tne structure of the equations
(2. 38) would lead us to make the same remarks (section 5) regarding

(2. 38) as were made regarding the structure of (2. 21).
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7. Variation Principle fcr Field Equations.

The field equations for the electromagnetic field may be
(5)

obtained by considering the trace of the operator

g

L =- J—F F’wu— r';“,-) 6.1)

i G

where in this section

F;.ov' 2l [xfﬂ,,/‘\,,l -1 [/F,,A/LJ (3.2)

(6), (3)

If we proceed in the manner of a previous report we can show

|
that if the field equations |
{

. AN
Lipe, P17 1= ¢, (3.9

are satisfied, then the vector operator

NM < YA TA, FPY v

)

satisfies the conservation equations

fzf/w, Nl =0, (5.5}
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Furthermore it (3. 3) 18 satialied whien the symmetric stress

energy momantum tensor
T/.o v T\f,w = Vq— (.r_\,wv’ F'o(,ra Fd/&/F/Ld F::’ F& F/w.x
P RS R ), o
satisfies the conservation equations
(/F/,,/T/W] = O. (3.7

8. Solution of Free Field Equations and Second Quantization in
Canonical Terms.

The solution of (3.3) which i{s hermitian may be expressed in

terms of our basic functions as

s Ik g R e " bl R E IR 60

where

(%)kt>’-’=‘)l(\%)k ka)‘.’:lkl)) 3. 9)

and

e
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L™ A’u ( 4 o =
kT Alg K7D =0, 1
. j {(3.10)
+ . -
k. A (g, 1k =0,
to be consistent with the supplementary ccndition

(_'1)/‘4,/ AM*] = 0. (3.11)

If we anticipate second quantization according to the commuta-

tion relationships
[A?:Y‘(%l) klt),AS(%u)kut)} ____(3 ﬂ,a)A ' M £ (%:) 5(%'“%“))(
5, (R'-R") NS, 5.12

where l‘)5=l,1)3) n"sgo) r.#-s_',:—l/ r =S
and & (%') is for the moment an arbitrary function of the C-
numbers %’u’ , and with all the other A°5 commuting we will dis-
cover that the terms involving the displacement operators /P in (3. 8)
may be transformed away by means of a suitable unitary transforma-

tion. Let us consider the operator (hermitian)

(rf’fj[--ﬁo aﬁ"“[’/i'(%l_ k*)Ar(%,hﬂd}kd*% (5.13)
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From (3. 12) we can conclude that
[¢,A%, k)] = < kle (4) . %"%w%‘\s(%,k"),
[(15,7\5(% )| --=lkle (%),Bw, '“/8715/7{5(% k) b
(3. 14) implies that with

Sz ¢etf ) ot
SA*, k) S = g io M A )

(3.16)

YTy Rl T8 i

$)

Consequently, if <K is chosen to have the value X ( given by
K = e NN i 8"(%)) (3.17)

/
then if we denote by 5, and ¢ J the expressions (3. 15) and
(3. 13) with the & occurring therein replaced by X j given by (3.17),

(3. 16) becomes
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Gasly kS et AN R )

%’ (3.18)

!
s

S A (g, R0 = ety R (g k)
However, we must note that as a consequence of our choice for S ’
S ‘ y S, 7= |
Vel / « %M[I\"’(%,wx\r(%,m] Phd'q, o
which may be verified upon recognizing that f%. and X commute

with the rest of the symbols. d‘, is given by (3.17). (3.19) may

S S =+ QF, (5.20)
0" = [« g [Ag OAG RN om

If we now invoke the equations (3.18), (3.19) and (3. 20) we

discover that




:
4
3
E

31.

— e ———————

SRS < [ kI (Kl K)EH" e

" 2k
epnm -ﬂ“.‘m’@m”q ]

i | A (4,+K") e "lq”@.”'i‘t?’”@’lk}*”ﬁj d’k d*% (3.22)

i From (3.10) and (3.11) we obtain
i &
= 1 o i i- $ : okt s kT oia vord
;. A'-- [k Z‘BS[A (%,R)@‘H’e “+ As(ft,+k+)6 g“au 3I@«_\‘L%J(?,. 23)
!
F and correspondingly in view of (3.18) and (3. 20)
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Now if we denote by ¢,_ the expression
g = k/: @ (3. 25)

¢
where Qf is given by (3. 21) we can show in 2 manner similar to that

A
B

€

which led to (3. 18) that
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S (3. 26)
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where

LA o
S: = Qw9 (3. 27)

T b, s

By virtue of (3.26) and (3.27), (3.22) and (3. 24) may be written as i

b SAS IkI™[A° h*)e"" g E L

B )

i @ e ((5 k")@“k * JcPk cf“%} (3. 28)
{ SAS /lkl k%k)é‘ @t ke

o-ihi e B (lb +k* )G’Lk’“r' J(Phj'*zﬁ (.29

(3. 28) and (3. 29) enable us to state that the transformed vector

potentials have been localized in the sense of

" S A S]] = 0. (3. 30)

(3. 28) and (3. 22) may be written as
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“S(k-1kRI)+
RS S ORI (WATID [l R T A
‘b b

and

SAS" - /lk
ok et A’S(lﬁ,k)é(kf‘kl)]@"k/‘*‘#d*kd ﬁ' (3. 32)

%we b § (k-1 k1) -

]
where 5 “?o X l R | ) is the vne dimensional Dirac function of
the indicated arguments. In order to preserve hermiticity we

must impose the condition that

As(ﬁr,—k)=/‘\\s(¢6, +k)) (3.33)

4

A (g,-k) = A* (g, + k),

Calculation of Energy-Momentum Vector and Number of Quanta

Operator.
In this section the A’“ and F v which appear will be

9.

M Ot
assumed to be the transformed e‘cpressions S A »S, and
ol -
S ‘ }'/M,- .>, where S is defined after (3.17). Furthermore
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we shall denote by A S( k) the expression
As(k)s/A‘(«b,h) 4*9, (5.34)

so that remembering our convention at the beginning of this section

(3. 31) andi (3. 32) may be written as

A< Ik [t (, 1D+ €5 () )] %
eakﬂzw d¢ k'.) -
R Ik [BURIEM ™S (- e+ €75 RS el
e E k. (3. 36)
If we now introduce (3. 36) and (3.36) into (3.2) we obtain:
- /ckr' (R)EHTS (k- R, (RIS ke I

6“’“”/‘ d* k) (3.37)

where
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FL (k)= [k ALR)-ke A () - E, (), 1

F (k)= i [k Ay () A, (0]< - £, (8, )
ES U?) 2l “‘r As(k) - \ZS A"(k)}) 1
N L . J (3.39)
FL =ik, Ay () -k, AR
But according to the usual identification F(,s., = = Es )
F.z = ’Hs ’ an"Hu and FB: =-H., (3.98) and
(3. 39) may be written in vector notation as
B = -ikXAR), )
5 j \ (3. 40)
H(k)=-L R XA 5
£ (0= -i[k AB-KAW]
(3. 41)

£ 0--i[k AW KA J

That the F/‘u_v. given by equation (3.37) is hermitian may

be surmised by recalling our hermiticity condition (3. 33) which

e e -
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implies l/—:w’ (-— l?) = - F/:.uv- ( k) . From (3.11) we must have

avo -

s sl o€ o

AR (k)™ ke AR, |

MOy

. - (3.42)
A ()= ()™ kA (k). J |

If we introduce three mutuaiiy orthogonal unit vectors

i {
i; & (k)) e (R) : él( R) which satisty:
k Xe (k) =0,

¢ (hxe (B=¢ k),
(3. 43)
¢ (KX (R)= ¢ (k),
e (Xe, k= €. (k)
then

AlR= (g (k) Alk) € G+(&, (k) A)e ()

e AR)E, (R), o




and from (3. 42)

A (R) = (ko)™ TR E (R) A (R), (3. 45)

S
S .

E(!”) and 7\/0 Uz) . Conse-

t with similar expressions for

quently,

g(h) é(b) -.:.O)

£ (k) §'(h):-lko(§,|(h)'é(k)>) (3. 46)

-~
4 PR

E (R € (k)= -ik,(&, ()N (R)),

)
trom (3.41), (3.44), (3.45) and the properties of é/ €, ...

(3. 46) implies that we can write

[ (W):-LkJg (R)-A (k))g;,(b)-uao(@l(w.a(h))g;&). .40

Also,
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) HW- € (k) =0, N
f Hk) € =1kl AlR). €, (k) (\ (3.43)
‘ Hik)- € (b)--ilkl A(R)- € (k) j
; from (3. 40), (3.44) and the properties of the unit vectors. Hence
Hw-ilki(e (0- A€ (R) i kI (& (R)- A()e, (1)
| - 1RICk, )" € (R) X E (k) (3. 49)
o] e exprosonmor E (k) ans 11 (). or e tmie |
e to those given by (3.47) and (3. 49). |
; § Using (3.38), (3.39) and (3. 49) we may write
; ,f._:fm-'[g(me"‘wf’“é(ko.wupe"%“”“;g'(k);(kouk\)]x
1 4
,,ui ;’& Qb2 |4 k, _—
( ..H:—/i ) [CRXER)ESS (k- k€5 E RN E(R)
S(k,+ k)] 5 d 4k msy |
d i
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From (3. 6) we have
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'7;:%{[(57(5—!) ‘(ng)t]. (3.53)

From (3. 4)
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N¢ __.‘N‘D » - Vz L.A.,) Fe] = LA [Aa; F;s])

:-‘/z[ég~g é\]) (3. 54)
No-N=-Y4TA, F" ). 2 [A, F*°)-7[A, F**]

= L‘/Z‘ [AO) FSO]"L/Z [At) F'St]) 95

i AN AL
P e e T S TSI, MRS

N = [AE-EAT+7AIAXH-HXAL ws

In developing (3. 52), (3.53), (3.54) and (3. 55) we used the convention

that Greek indices run from 0 t0 3 and Latin indices from 1 to 3. The
: n/“' v

indices were raised or lowered using the flat space metric tensor

or f] v and the customary relations between the I 'S and the
K )

‘: ) H S were used together with some elementary vector

analysis.

Since the x/u'commute with all the rest of the operaters, we

{2

need not appeal to the device developed in some earlier work™ * for

integrating non-local functions. We may regard the l’w as C- num-
bers. I we introduce (3.50) and (3.51) into (3. 52) and form Tood 3}4 |

we obtain after making use of certain vector identities
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| R LRI S oA D

e EREME ST Skr kDS 1D

E (0e'5" €5 ELShARDS (e 1k

Q™

S O EW)E Gl MDS (K-

| _
i 3 . - |
. o &RE % g h') (3. 56) 1
" 1 ; after recalling that
::‘:_ l; b i S 2 ,
e 8 /@W‘”* b d’r =9 W’ 85 (R +k )) (3.57)

£ ( k b: Y .
where J 3 + R/ isthe three dimensional Dirac function of
the indicated arguments. (3. 56) may be simplified after using the

properties of the Dirac funciions appearing therein to
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v
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TR T g me WT‘!. 4

G°=¢ w/ 15 (ke kO] E () ERDS(R-Ih)
+e R ERE e 775k, +Ri )] 2
d*kd*k". (3. 56)
- $1 ik [E0) E(H e ER) £ )y

d’k (3. 59)

snce E (k) =-E(k) ; E (k)=-E{-k).

If we introduce (3. 47) into (3. 59) we obtain

G55 ([, w- AN e )

€57 g, 00 R g, W A)e ] x

4>k (3. 60)

\ <
s, £ ¥ pi: " - ,,. gL - P 1 Gy, Y -
PSR s apsapprr, T S s
. WS Lok d oL - ®

In the same fashion we can calculate the momentum vector § by

evaluating from (3. 53}
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g”'/_';t, d’r

g ‘ /
I ! .(rr'vn [ 1V r] A%y
| ; R B AR AR RS
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: =M°,’|h|"}g[£lk);§(k)é(kz,-\H)—

obae” E(h\ t(h)@h"‘o”élz +IH)] L ey

z . ; (3. 59) and (3. 61) may be combined into the following expression for

¢ the 4. vector G/b

%.

—ynfk/*lhr [E®EWS b,-1kl)-

gt l-_( ). HHG' (h+ml)] d*k (3.62)

E- (k) and E (k) are given by (3. 59).

Let us now proceed to calculate the number of Quanta Operator

3

N which is defined to be

(3.62')

N

!
=
[
I
v
™
N
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. %j 3 :
| ! where [N is given by (3.54). Now ]
L] Vo= A INE-EA,
N--//\k\ IkI { (RE 5 (b €7 A(h (k, +Hz‘)-
| [ERE™"S (kAR ERTE (05(ki k1] -
. [EWEST5 D E 05 (k)]

RO CRPRIR R N

(AR5l e 9" Al k+!u)]Je“5«*“‘d‘Ldk(aea)

If we insert (3. 83) into (3. 62) we obtain
N-; jur‘ (EAR-EWS G ARD-€4" R(k) Ewe 5 ]
EDAS AN+ E W) AW s I

.

d*k. (3. 64)

But from (3. 47) and (3. 44)
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AR ER)- -ik, (&, AK)(E Ak AWk, (e AR AR) ‘

K V- - E()-AW
| : = cb:' E( (L) (3. 65)

Similarly,

Ay E(h=E0- A~ TR E ), @. 66

wa

Consequently, (3. 64) becomes

Lt s

=-3w/m ENE IS (kD€ E(RDE () x

- !

6'5 4 ,,,k,,] d* }2 (3. 67)

for the nuraber of Quanta operator.
The structure of (3.67) and (3. 62) suggests that we may

liken the operator

e
v
e

é
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to a density operator in such manner as to indicate that P (k) (P'(
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gives the net number of Quanta operator in the 4- volume dq‘ |'&
in k— space. As a consequence of this definition and interpretation

(3.87) and (3. 62) may be written as
& =/k/‘/’(k)cl”z) (3.69)
N= /7t dk, 6.70

From (3. 70) we may construct other operators assoclated with certain

C- number functions + (h)say
sz FU£ER) d* k @.71)

which may be interpreted to correspond to the operator which indi-
cates the net contribution of the "particles"' } ( ‘2) . For example,

i £ () Y /ZO-B' w[ in our case then I~ = O because of the

appearance of é { ho 1 ' k ' ) as factors in (3.68). Howewver, ii

f (k) = }lo iR then F would be positive definite and would

be interpreted to denote the number of Quanta as contrasted to N
in (3. 70) which we have interpreted to denote the net nuinber of

Quanta. In the former example )‘ (ﬁ) clearly corresponded to
the mass of the particle associated with the 0. vector k/L ‘ as in

+
the usual interpretation. If we denote by N the operator for the
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number of Quarnta then from the above discussion
N"E/ko”zo\_'f(h)d*b. (3.72)
s

The operator for the total mass of the particles comprising the field

could be defined as
M'=/ViE-k.k £ (k) d* k, (3.73)
or

M=./llzo\" k, /RI-R-k k)4t k. (3.74)

(3.73), if taken as a definition, would in general permit the appear-
ance of negative masses. On the other hand the definition (3. 74) would
in general be positive because of the positive definite character of the
integrand. In any event for the case that we are considering both M
and M' make no contribution.

Before we close this section let us record for futtEe use some
of the non-vanishing commutators involving A ( % ,kt ) A (’t ,ht) y

E(ki) ’ g(ki), N and Q'w. From (3.12) and

(3. 34) we have
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| Wy L ’ NNy ! oL
" [A g 1), A, )] (s Ik le(g) () e
i
% l . Upon using {3 40y, (3.41) and (3. 75) it can be shown that
7
. ~4 T nt Ky "
TE(K*), A X< [A, by k), B ()]
| - 5ifIK qu;k;kg]e(p 5 (K=K, e
if we integrate both sides of (3.78) with respect to % we obtain
from the definition of A (k) and A (h\) + (3.34)

(B WA D]-[A (K1), E, (kY]
= [IH qrs X 6 3 (R'- k)ff ‘B)d‘* . (3.7

j In a similar way
';3 :’Edr“’*' *) B t)] - - IKI[I |‘r‘rs-k'rk;]'b,(\z'—‘iyf(%)d’s £8.78)
A G ION = -9 ikl e (D E (Y, e

[Kr(%,k*),N}- gL k) e (16_) Er (k%) (3.80)
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| § (AN = £k -'qcﬁ)e"*‘%?"'E (R)e59" .o
i é 'L',"‘;r.',,h",g)}i'}gw"bl‘a!“z(%)(t‘h;"’" 'Er(me-*%‘*") (2. 92)

| £, (K),N] = §v E,(k*)jé () d4’1;) (3.83)

i

E (&) N] =313Er(k*)f&(%) ci*%,, (3.84)

| [£410,1]--§10°€ 5 E (I [elgaty, o

E 14

- [E’;) Uz), N]=*2 e E,(k’)@"*‘*”j& (3,) d* T

g ’ |
g : and finally
A 5 . |
V,0* )-89 4{‘!hI[E,.(h)Ar(ﬁ,lz)—Ar(%,k)l:,(k)}d"«tdak. . i

10. Introduction ¢f Boson Opcrators.

appearing, unless explicitly stated otherwise, are the transformed
L . |
expressions S G" S S, N S, ' ¢ which we shall

. ]
)
4
simply denote by 6/ »
after (3.17). If we denote by g;( k) the Q (h) which appears

in (3. 43) then upon defining

In this section we will continue to assume tuat ail operators

N , * ¢+ respectively. S, is defined

87) l '
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Ak ee, () A,  L=i2,3, (3. 88)

we find from (3. 7€) after integrating with respect to q( and using
v

the definition (3. 84) that

il

(A, (), AL 2] = (57 1K S5(R-RDN ¢

/&(%)d“%) (3. 89)

which implies in view of (3.88) that

RO A (REN (5 7) IR ) ( )d4

AL (R)A; (R=M)= (6 IR'1 S (k' -k N Jeg)dg, e
in view of the properties of our unit vectors Q H (h) . Thus the

!
A; ( lL&) satisfy the same commuiation relationships as the A r “2) .

Introducing (3. 88) in (3. 47) we obtain
E(R'):=-LIRA (kD) g, (RE)-LIREA R e (k). @
Consequently, (3.67), (3.60) and (3. 61) become

Nm’i /lk\' {A (\z*ﬁ-\';_ (k*)-ﬁi't;"””,&fb(lz') A:( k’)(’,""ft‘?i c\’Lj(s. 02)




?;ig

R 6,15 [{RWTR )+ €45 RlOA K Y %, .00
| !

, R TR e

| Gaom5 (Il kALK, ()-€” R (o) AR)E™ (% .50

t=1/

I we now definc

AL(RD = IK1% (k) (5m7)
(3. 95)

L] e AU 2 k) (1) (o) J

then in order that

-

[ (69, 0,0 = 8, (k=0 o

we find from (3. 89) that the function 2 (‘b) which we have intro-

duced in the beginning section (8) must be normalized to unity:

/é;(%) d‘*cb = 1. (3. 97)

Whether a suitable invariant function satisfying (3. 97) exists or not

cannot at the present stage of development be answered. (3. 92),

(3. 93) and (3. 94) become in terms of the Boscn operators Y\
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Z[n(k*)r (&)1, (RO, (& IERY \l
G, 3 [, 67, )7, ) ], } -
J

T —

QZ./I\ 1, (697, (kD=7 () 5, ()] &2k,

(3. 98) may be replaced by a sum by iritroducing the formalism

@ where for a function } ( \1)

/HL) d”k = %}(k)s”(h)} (3. £9)

where S (k) is the number of points per unit voiume in the neighbor-

of Dirac

y 2ok a
s .@.d/w ?ﬁ:".f 2
the » - 4 AR >
A RS AR e T ety e T T 7 ETRET T AR

"'f'i?‘”a' oy

hood of any r<int ,‘&, . K the continuous Boson operators n and

Y} appearing in (3. 98) are replaced by the discrete Boson operators
~
q + and Y] . according to
oé ' OL

-

n=sin,, |

e Y J (3. 100)
| 1 ~ o

TL‘ _ ; §1 q = S r]o' 2

b and use is made of (3. 99) we find that

i
L2 g
i
(0 f<
o y” N £ ]
o 3
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N-2 5 I k)L, Gn, (),
24\; “M (&) n (m*ﬂ (t)n,; k ﬂ (3.101)
ZZ_ . (h*)q (k*)- |q (k)r\m(k]

(@

G
G-
However,

Sy ey = 95 (R-K') (3. 102

so. that in view of (3. 96)

{?l k), 1, U‘"t)] = Sp N - (3. 103)

Thus from the well known properties of the Boson operators we con-
clude that the characteristic values of N are comprised of all positive
or negative integers. Go is positive definite while 9 is not. The
characteristic values of Go and % are sums of integer multiples

of l \2 \ and E\' respectively. Since the symbols used in this section
are the transformed symbols involving the unitary operator S, defined
after (3.17) and since the characteristic values are unaltered by unitary
transformations the untransformed symbols G/“ and N have the

same characteristic values.
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IV, INTERACTIONS
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11. Introduction.

In this section we will attempt to recast the generalized
Schroedinger equation for unitary transformations to a form such as
to yield directly and independently of the commutation relationships

satisfied or postulated for the fields the result {hat if the "field

S TIN S L est rw owmm—v--— «

equations" are satisfied then S = const. In the usuai formulation

2

of the theory a Lagrangian function L appears in the generalized

Schroedinger equation as

PRV RN oM 2 Fualpertm:

L25 _) S(e), 4.0)

7 ’
24

e
2
where S' ( < ) is a unitary operator and 5‘57 denotes the func-

tional derivative of a functional of the space-time surface. ) If L

in (4.0) is a "free" field Lagrangian, it is not at all apparent that

A

S = const. unless ore undertakes to make further assumptions

regarding the commutation relationships and/or appeals to representa-

tions of one kind or another as in the usual arguments. (©) Itis

believed that the Lagrangian function which appears in {4.0) should

be constructed in a manner which renders manifest the statement

S = const. for free fields.




S

It would be possible within the framework of the classical

theory of C- number fields to arrange for a modified L- 10 vanish.

For example, the Lagrangian

ﬂu'gu QU
L = 52
could be written as
_ /“r_a_ -_g_y_’ puv | aTU .
L=n"" 5z~ Usos - Uiz,

which involves a term of the form of a divergence which presumably

makes no contribution. The original Lagrangian L and the modified
1

Lagrangian L H

'Ll" / ALy U U '
o7 I

would yield the same field equation upon insertion into the classical
action principle. Moreover, it would be possible to construct a

/
stress-energy momentum tensor c¢orresponding to L via the methods

of general relativity(g) /_3r the usual canonical formalism_7 upon

[
replacing L by its covariant generalization

L' - ~3/““ U U

v )




o v

s
where r is the metric tensor and ( ); 0y denotes covariant
differentiation relative to the metric 9 /U,f . This however is of no
import to us at the present time. It is clear that the insertion of a

(s
symmetrized L say

IR v [ IS Y TGP Ly
L"‘”l Uax'“)zr’ 2] mo",)z."u

!
into (4.0) would yield the desired property S = const. if the field

equations are satisfied (in our cace DL U=0 ). It would be possible

in this manner to obtain modified "free" field Lagrangians for all of

the fields of current interest. The above procedure, however, suffers
a defect in that it is not independent of the manner in which the classical
fields, which are promoted to be operators in Quantum Theory, are

represented. In order to make some progress in this direction in the

next part of our investigation, we shall assume from the outset that the
symbols entering cur equations are operators and for simplicity we

will take our fields to be local.

12. Transformation Theory.

Let us consider the operator Lagrangian L which is a func-
tion of some fields ]L As A =1,2 ..., the displacement operators
S 0 1,%4 and some other given functions of the space-

(i
time operators %«, , say j g - The consideration of the first
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variation of the trace of L expressed in terms of the variation of

f A 47/_; and g g leads to the expression

STe L=

- —
- o
RIS i P _‘m’% M.‘) o i

A (FASfa+ N/‘"é,fﬂﬂ‘/lségﬁ), (4.1

e

which, if the variations arise from an arbitrary infinitesmal similarity

e

transformation, implies the identity

v

e

4.2)
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Because of (4. 2) we may write

L'=4, FA-r,p/q_ N"LTQBMB

F f, + N/“ZP/LL +M® Y 4.3)

R4 S TN Y0NS Ay o e S S T

which we will define to be our modified Lagrangian. If (4.3) is con-

structed so that i is hermitian, then if we consider our fields to

be local the functional equation

————————

éS’(U’) s £ g

), (4.4)
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' |
withof given by (4. 3) defines a unitary operator S . Now since

we are assuming that ga is a given local function then the

expression [jB ; M BJ = O in (4. 2) so that we need not be con-

VY AWibe widasw L aaa

cerned with the exXpressions involviuy jB o @.2). With this taken

into consideration we will define
L=t F * P N~ = FA)(A-rN’u/P/u,

/
and insert it in place of Z which appears in (4. 4).

We will now show that if the field equations are satisfied
A _
F e o )

then S (f ) = const., In order to show this let us first rewrite

/
(4. 4) with ﬁ replaced by I as

P(e)S(a)=L S(q),

where in a representation with y 2 diagonal

@IP@N e iy, S(e'-p)=il gy ¥

~ v

(4.9)

(4.6)

4.7

(4.8)

where 5 (L’ -—)’,9 is the four dimensional Dirac function and it is {o

i S SN B [ it

o
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be understood that <¢ 'I P(G" ) , 1’" > is defined in coanection

] with other functionals of the surface 0’ . Now
-] (
' AR " " ! AN L
: GAREIN e - Lﬁ}(af’(x I AL Yy
£

= ‘é_—%—) (' IACa) e, (4.9)

Also

R TR L e T A P R - AP
. T g

| CI P )= [ A6 1) 2my S0 2042 10

upon introducing (4. 8) and using the rules of matrix multiplication,

-
L N i e

1/
/A( o), Bd'x = [A()B), [Al2)B],

/ Béa(p)

where [ ] T denotes the contribution of the argument upon evalua-

(15 5SS, P
s

“~
*

s E

«

> )

- )
s T R 0
R

g

tionon ¢ . Applying this result to (4. 10) we obtain

COIAT) Pla) g = -t 20 (LA a)’t) (4.11)

97T,




owing to the circumstance that the evaluations of L ] y for this case
' . vanish. (4.9) and (4. 11) are such as to indicate that P (¢) is an

i | hermitian operator. For upon introducing A (ff ) = | we discover that

P> = " 1P () e > 4. 12)

o2 a e - %

\ ! upon recalling that

RS

e ") =<'’y = & (1’/'— r'). (4. 13)

Raoe o0 v

P

If we now take the matrix elements of (4.7) in a representation

2wy

with £ - diagonal we obtain from (4.8) and recalling

@ g |2 0= i3 § (K'-2, w1
e 1 S(e) 2> -
(KN FAS(ew) 1z
i /,—5 S -2 INFGIS (T @) 1> d* e -
IfFSEEd-tiy [ @INIS (1)l >do )




— - | }
: 81,
t

B e ;25 A2) = 2 [ AG)d G, () . vows NP

‘ : % . and S (f (7'),) are presumed diagonal in a representation with

i E ) X~ diagonal
| ( ~ |
: J [N ) S () Ie' >d o, (v) =
f <,~¢% N“ () S(¢(#) d 7, (@) 1> =
s N () S(r&) 12>

Hence,

ARty AR

|

o where N (77) 5/ N“ &) da,. (4.15)
e ’

|

|

|

i | (CIWSW) I d g () -

.:ma IN(@) S (@) le>,

§—
e
SR BT LE P AT S A IR TP 0 BRI e

“’l Therefore,

”;#?}..;i :
N ’

y r { (*) This replacement is possible only in case S (ff ) = conat.
However, we shall define symbolically /f N’“ S d (7;“' = N S

s W . T e e
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3@)(14! S(r)lz">=

1, FAS@) KD iy 2 NS (o) [,

écr(t)

e
e e AN RN

A
; so that if F £ )

")'(‘ <)L|(l+N 4’))5'(0’ | * >} . (4.198)

e T

Remembering that if F A = 0, N (0’ ) is independent of
g o
¥ (4. 16) possesses a solution of the form S = SO (N) of which

a simple unitary form can be exhibited in the form

S = e

> (4.17) :

where X is a real C - number.

In general we would have in the case where both )( A and

= A
‘ are diagonal in the X~ representation

e ){@l (14N (e)) Sle) lx’>) $,6) F A0 1S ) . 0

whether the field equations are satisfied or not.

(4. 18) can also be written as

s T
- = i A



%{ 63.
| % <L'li,é—;j)@(l+N(T)lS((f),)(/”>=
Ll B . '
- {e' 144 FAS(e) ">, (4. 19)
'
£

which would imply that

“S'r"fs(’!«)[""N(Ul)] S{r) = 4, FAS(e), (4. 20)

An integral equation corresponding to (4. 20) which incorporates

! the "initial" condition Sl ((f) =1 on 0, is*

! ] o 7 |
| S(e) NG i NG +N(n]"/ LSO
- /
} i It is apparent that (4. 20) and (4. 21) differ from the usual
' i functional equation for the operator ,S’ (JI ) since it involves
' i the expression N (f ) defined by (4. 15) which from some earlier
oastiny. &
e ol U i
j E *It is to be noted that [H'N (QJ)] is symbolic and is defined by
",1 s ) Ul )= Li+N (¢ )] ok (0" ) where V0") satisies
e g U6+ NIV dg, 6)= Flr),
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@

work™" we have defined to be the operator for the net number of

Quanta. If we proceed to solve (4. 21) it seems to indicate that the

4
matrix elements of S in the first approximation would inveolve the
reciprocal of the net number of Quanta plus unity so that as the net

number of Quanta involved increases the probability for transitions

from one state to another would decrease in a manner involving the

squareof N(7)+ | | Qualitatively this finding implies S ()1 5

as the net number of Quanta increases. Consequently, if our obser-

. ¥
vations are valid, the probability of transitions from one state to _

i RS

; f‘; another for assemblages which involve large net numbers of Quanta

§ %}e Is small.* This may be another approach to the concept of statistical
; equilibrium, an approach which stems directly from the introduction ;
§ of the operator N (0)) which appears naturally from our manner 5
§ for obtaining operator identities @valid in any representation. The

demand, howewer, that our field equations be obtained in a manner

independent of the representation has as a consequence aitered the

usual form f0r the generalized Schroedinger equation through the

appearance of N (GJ ) in (4. 21).

* Assuming that the matrix elements of the interaction do not involve

i
powers of N higher than unity.
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